## **PART 1: QUESTIONS**

| 9 | Name: | Age: | Id: | Course: |
|---|-------|------|-----|---------|
|---|-------|------|-----|---------|

### **Functions - Exam 1**

# **Lessons: 10 - 12**

#### **Instructions:**

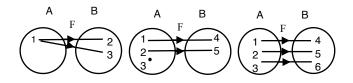
- Please begin by printing your Name, your Age,
   your Student Id, and your Course Name in the box
   above and in the box on the solution sheet.
- You have 90 minutes (class period) for this exam.
- You can not use any calculator, computer, cellphone, or other assistance device on this exam.
   However, you can set our flag to ask permission to consult your own one two-sided-sheet notes at any point during the exam (You can write concepts, formulas, properties, and procedures, but questions and their solutions from books or previous exams are not allowed in your notes).
- Each multiple-choice question is worth 5 points and each extra essay-question is worth from 0 to 5 points. (Even a simple related formula can worth some points).
- Set up your flag if you have a question.
- Relax and use strategies to improve your performance.

### **Exam Strategies to get the best performance:**

- Spend 5 minutes reading your exam. Use this time to classify each Question in (E) Easy, (M) Medium, and (D) Difficult.
- Be confident by solving the easy questions first then the medium questions.
- Be sure to check each solution. In average, you only need 30 seconds to test it. (Use good sense).
- Don't waste too much time on a question even if you know how to solve it. Instead, skip the question and put a circle around the problem number to work on it later. In average, the easy and medium questions take up half of the exam time.
- Solving the all of the easy and medium question
  will already guarantee a minimum grade. Now, you
  are much more confident and motivated to solve
  the difficult or skipped questions.
- Be patient and try not to leave the exam early. Use the remaining time to double check your solutions.

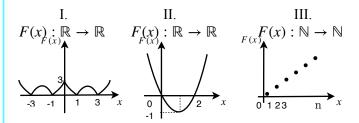
1

1.  $F: A \rightarrow B$  is a function from set A (Domain) to set B (Codomain) that:


- a) UNIQUE  $y \in B \Rightarrow \text{EVERY } x \in A$ .
- b) UNIQUE  $x \in A \Rightarrow \text{EVERY } y \in B$ .
- c) EVERY  $y \in B \Rightarrow \text{UNIQUE } x \in A$ .
- d) EVERY  $x \in A \Rightarrow$  UNIQUE  $y \in B$ .
- e) None of the above.

2. Which Graph(s) represent a function  $F: A \rightarrow B$ .

I.


II.

III.



- a) Only I
- b) Only II
- c) Only III
- d) I, II, and III are not functions
- e) I, II, and III are functions.

3. Which Graph(s) represent a function F on x.



- a) Only I and III
- b) Only I and II
- c) Only II and III
- d) I, II, and III are incorrect
- e) I, II, and III are correct

4. Find the domain of the function  $y = \frac{x}{x-5}$ .

- a)  $D = \{x \in \mathbb{R} / x \neq 3\}$
- b)  $D = \{x \in \mathbb{R} / x \neq 4\}$
- c)  $D = \{x \in \mathbb{R} / x \neq 5\}$
- d)  $D = \{x \in \mathbb{R}/x \neq 6\}$
- e) None of the above.

5. Find the domain of the real function  $y = x^2 - x - 30$ .

- a)  $D = \{-5,6\}$
- b)  $D = \mathbb{R}$
- c)  $D = \{0\}$
- d)  $D = \{-5,0,2,3,6\}$
- e) None of the above.

6. Find the domain of the real function  $y: D \to \mathbb{R}$  such that  $y = \sqrt{x^2 - 16}$ .

- a)  $D = \{x \in \mathbb{R} / x \le -3 \text{ or } x \ge 3\}$
- b)  $D = \{x \in \mathbb{R} \mid x \le -4 \text{ or } x \ge 4\}$
- c)  $D = \{x \in \mathbb{R} / -3 \le x \le 3\}$
- d)  $D = \{x \in \mathbb{R} / -4 \le x \le 4\}$

e) None of the above.

7. Find the domain of the real function  $y: D \to \mathbb{R}$  such that  $y = \frac{1}{\sqrt{16 - x^2}}$ .

- a)  $D = \{x \in \mathbb{R} \mid x < -3 \text{ or } x > 3\}$
- b)  $D = \{x \in \mathbb{R} \mid x < -4 \text{ or } x > 4\}$
- c)  $D = \{x \in \mathbb{R} / -3 < x < 3\}$
- d)  $D = \{x \in \mathbb{R} / -4 < x < 4\}$
- e) None of the above.

8. Let  $F: A \rightarrow B$  be a function such that:

$$F$$
 is even  $\Rightarrow F(-x) = F(x)$  for  $\forall x \in A$ .  
 $F$  is odd  $\Rightarrow F(-x) = -F(x)$  for  $\forall x \in A$ .

- I.  $F(x) = -x^2 3$  is odd.
- II.  $F(x) = x^3$  is odd.

III.  $F(x) = x^2 + x$  is neither even nor odd.

- a) Only I and II are correct
- b) Only I and III are correct
- c) Only II and III are correct
- d) I, II, and III are correct
- e) None of the above.

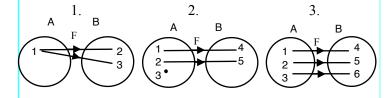
9. Let  $F : \mathbb{R} \to \mathbb{R}$  be a function such that:

$$f(x) = \begin{cases} 1 & \text{for } x \le -1 \\ 0 & \text{for } -1 < x < 1 \\ -1 & \text{for } x \ge 1 \end{cases}$$

Given e = 2.71 and  $\pi = 3.14$ . Calculate:

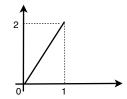
$$\frac{f(e) + f(-e)}{f(\pi) + f(-\pi)} = ?$$

- a) Undefined.
- b) 0
- c) 1
- d) 2
- e) 3


10.  $F: A \rightarrow B$  is an NOT injective function (one-toone) if:

(Notation: "Im" is the image of F).

- a)  $x_1 \neq x_2 \Rightarrow F(x_1) \neq F(x_2); \forall x_1, x_2 \in A$ .
- b)  $Im \neq B$
- c) Im = B.
- d)  $\exists x_1, x_2 \in A \text{ such that } F(x_1) = F(x_2)...$
- e) None of the above.


11. Let  $F: A \to B$  be a relation between A and B.

Assume: I) Injective function S) Surjective function B) Bijective function N) Not a function.



Then:

- a) 1-N, 2-S, and 3-B
- b) 1-N, 2-B, and 3-S
- c) 1-I, 2-B, and 3-N
- d) 1-I, 2-S, and 3-N
- e) None of the above.
- 12. Given the graph  $y:[0,1] \to \mathbb{R}$ :



- a) y is surjective.
- b) y is injective.
- c) y is bijective.
- d) y is not a function.
- e) None of the above.

13. Let  $y : \mathbb{R} \to \mathbb{R}$  be a function such that y = 5x - 3. The inverse function  $y^{-1}$  is:

a) 
$$y^{-1} = \frac{x-6}{2}$$

b) 
$$y^{-1} = \frac{-x^2 + 2}{3}$$

c) 
$$y^{-1} = \frac{x+3}{5}$$

c) 
$$y^{-1} = \frac{x+3}{5}$$
  
d)  $y^{-1} = \frac{-x+1}{2}$ 

- e) None of the above
- 14. Let  $f : \mathbb{R} \{0\} \to B$  such that:

$$f(x) = \frac{x+2}{2x}$$

The  $Im_f$  is:

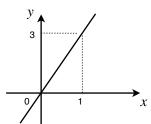
Hint:  $Im_f = D_{f-1}$  (Image of f is the domain of its inverse  $f^{-1}$  ).

a) 
$$Im_f = \{ y \in \mathbb{R} \mid y \neq 1 \}$$

b) 
$$Im_f = \{ y \in \mathbb{R} \ / \ y \neq \frac{1}{2} \}$$

c) 
$$Im_f = \{ y \in \mathbb{R} / y \neq \frac{1}{3} \}$$

d) 
$$Im_f = \{ y \in \mathbb{R} \, / \, y \neq \frac{1}{4} \}$$


- e) None of the above.
- 15. Given:

I. 
$$y = \frac{1}{x}$$

II. 
$$v = x$$

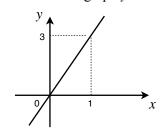
II. 
$$y = x$$
  
III.  $y = x^2 - 5x + 6$ .

- a) Only I is a linear function.
- b) Only II is a linear function.
- c) Only III is a linear function.
- d) Only II and III are a linear function.
- e) None of the above.
- 16. Given the graph  $y : \mathbb{R} \to \mathbb{R}$ .



Then, the slope of y is:

a) 
$$m = -\frac{3}{2}$$


b) 
$$m = \frac{3}{4}$$

c) 
$$m = 3$$

d) 
$$m = -1$$

e) None of the above.

17. Given the graph  $y : \mathbb{R} \to \mathbb{R}$ .



a) 
$$y = -2x + 4$$

b) 
$$y = -x + 4$$

c) 
$$y = 3x$$

d) 
$$y = 3x - 6$$

e) None of the above.

18. Given the straight line (r) y = 1 - x. Find a straight line (s) that is parallel to the straight line (r) and passes through the point A(0,0).

a) 
$$y = 2x$$

b) 
$$y = -3x + 4$$

c) 
$$y = 3x + 1$$

d) 
$$y = -x$$

e) None of the above.

19. Given:

$$(r) y = (\alpha^2 - 1)x + \pi$$
, where  $\pi = 3.14$  and  $e = 2.71$ .

$$(s) y = (\alpha - 1)x + e$$

Find  $\alpha$  such that (r) is parallel to (s).

a) 
$$\alpha = -1$$
 or  $\alpha = 2$ 

b) 
$$\alpha = -2$$
 or  $\alpha = 1$ 

c) 
$$\alpha = 0$$
 or  $\alpha = 1$ 

d) 
$$\alpha = 0$$
 or  $\alpha = -1$ 

#### 20. Given:

$$(r) y = (\beta + 1)x + \sqrt[3]{2}$$
, where  $\pi = 3.14$  and  $e = 2.71$ .

(s) 
$$y = -2x - \sqrt[3]{2}$$

Find  $\beta$  such that (r) is perpendicular to (s).

a) 
$$\beta = 1$$

b) 
$$\beta = -1$$

c) 
$$\beta = 4$$

d) 
$$\beta = -\frac{1}{2}$$

e) None of the above.

Name:\_\_\_\_

Age:\_\_\_\_ Id:\_\_\_\_

Course:\_\_\_\_

### **PART 2: SOLUTIONS**

Consulting

### **Multiple-Choice Answers**

| Questions | Α | В | С | D | E |
|-----------|---|---|---|---|---|
| 1         |   |   |   |   |   |
| 2         |   |   |   |   |   |
| 3         |   |   |   |   |   |
| 4         |   |   |   |   |   |
| 5         |   |   |   |   |   |
| 6         |   |   |   |   |   |
| 7         |   |   |   |   |   |
| 8         |   |   |   |   |   |
| 9         |   |   |   |   |   |
| 10        |   |   |   |   |   |
| 11        |   |   |   |   |   |
| 12        |   |   |   |   |   |
| 13        |   |   |   |   |   |
| 14        |   |   |   |   |   |
| 15        |   |   |   |   |   |
| 16        |   |   |   |   |   |
| 17        |   |   |   |   |   |
| 18        |   |   |   |   |   |
| 19        |   |   |   |   |   |
| 20        |   |   |   |   |   |

### Let this section in blank

|                   | Points | Max |
|-------------------|--------|-----|
| Multiple Choice   |        | 100 |
| Extra Points      |        | 25  |
| Consulting        |        | 10  |
| Age Points        |        | 25  |
| Total Performance |        | 160 |
| Grade             |        | Α   |

### **Extra Questions**

21. Calculate the domain of *y*:

$$y = \frac{1 - x}{\sqrt[3]{2 - x}}$$

22. Let  $f: [-1,1] \to \mathbb{R}$  such that:

 $f(x) = \frac{7}{2}x + \frac{5}{2}$ . Find the image of f. (Hint: Draw a graph)

23. Give one example of an injective function that it is not surjective.

25. Given:

$$f(x) = \frac{2x+1}{x-1}$$

Find the domain  $(D_f)$  and the image  $(Im_f)$ .

24. Find the graph of the linear function:

$$\frac{x}{3} + \frac{y}{3} = 1$$